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In this paper an idealized exact penalty function is derived from
natural considerations of the flow of particles under different forces.
It is shown how Fletcher ’s exact penalty function is an approximation to
this one. A second order version of the idealized exact penalty function
is developed which is computable.
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THE GEORGE WASHINGTON UNIVERSITY
Schoo l of Engineering and Applied Science

Inst Itute for Management Science and Engineering

AN I1~EALIZED EXACT PENALTY FUNCTION

by

Garth P. McCormick

1. In t roduc t i on

In [11 and [2 1  fletcher developed an exact penalty function for

con s t r a ined optimization problems . That is, he showed how o.ia unconstrained

m i n i m i z a t i o n  problem could yield the solution of a constrained problem

(in a sense to be def ined  in Section 2 ) .  In this paper , an idealized exac t *

p e n a l t y  f u n c t i o n  is derived from considerations of the movement of a par-

ticle under different forces. This Is done first for the equality constrained

problem and then generf1lized to the inequality constrained case.

The idea] ized exact function has flow lines similar to those observed

fo r  the p a r t i c l e .  I t  is show-n tha t  Fletcher ’s exact penalty func t ion  is an

approx ima t ion  to the idealized one near constraint boundaries. A new corn—

putable exact pena1~y function which uses second order information is devel-

oped which provide G a better approximation to the idealized one.

2.  Movement of a Particle Under Different Forces

Consider the equality constrained nonlinear programming problem :

minimize f(x)

x e E~ (1)

subject to x c R = {x l h ( x)  — 01

I.

— - — -
- -~~~~- -~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~ - - —- 
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T—359

w here li(x) i s  a p by one vector of functions and vher2 X £ E~
’ is

in n d imensiona l vector.

A p h y s i c al  ~itiiation which models this is one in which the particle

in I’~ is acted upon by forces which tend to decrease the function f(x)

and which also tend to drive the particle to a point satisfying the con-

straints. Many models of flow result depending upon the relative magnitudes

of the force h u e s .  In Figure 1 is one situation associated with the problem

m i n imize  - x + y

(x ,y) (2)

subject to x 2 
+ y

2 
= 1

In Figure 1 the l ines •if force off the perimeter of the circle are entirely

assoc iated with drivin~, the particle to a feasible point . This is done in

a way to minimize the distance between the particle and the feasible region.

Once on perimeter , the lines of force become the gradient af the objective

function projected onto the tangent plane .

An exac t penal ty func tion whose gradient vector approximates this

fl ow pattern can be formulated as:

(f[Pr (x)] jf X £ R
E(x )  ~ (3)

p1(x) if x~~~ R

where I’r(x) is the projection function which maps any point x into the

‘c l o se s t  feasible point ’ and where ~~(x) is the minimum dis tance from x

to the set  R given by

.t~7(x) mm x — y ‘ (4)

y c R

The major difff c’ilty with this exact penalty func t ion is that neither

ft nor its derivative is continuous . Algorittuss for minimizing unconstrained

functions require (usua!ty) that the first derivatives of the function be

continuous. Furthermore , following these flow lines is noc necessarily the

quickest way to solve the problem. A better strategy would he to anticipate

- 2 -
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t h e  flow near the per Inueter and create a line of flow which is a combina-

t ion 01 the projec ted gradient on the perimeter and the gr~dient of the

squared distance func t ion. The resulting lines of flow would be those pic-

tured in Figure 2. An associated natural exact penalty func tion would be

E(x) f[x—d(x)j + qd(x ) Td ( x )  (5)

where x —  d(x) is a point solving (4) and q is a scalar greater than 0

There are difficulties with this definition involving uniqueness. Note that

d(x) i s  not unique in example (2) when (x,y) (0,0) . Usually the vector

d(x) is unique but if it is not , to comple te the def in i t ion , the follow ing
is used :

def ine D(x;- = {dlx—d solves (4))

Let d(x) be a vector from J(x) such that

f[x—d(x)] (6)

l I l i n u a l .  This specifies the value of the function E(x) although not

necessarily the vector d(x) since theoretically there can 1i~ more than one

vector in D(x) satisfying the criter ion (6).

This exact p~nal ty func tion (5) combines a penalty associated with
being awa y from the feEsible region and the value of the objective function

at the closest feasible point. The differentiability of the function (5)

depends upon the diffetentiability of the distance function d(x)

Some isovalue contours of this penalty function associated with problem

(2) when q = I are given in Figure 3. Note that this is not continuous at

(0 ,0) , al though from the definition E(0,0) — + (1/4) since

D (0 ,0) - { d I H d H 2= J }  and d(O,O) (+Ii/2,-/~/2)

The equivalence of the unconstrained minimization of the idealized

exac t penalty functIon (5) and the constrained problem (1) is summarized in

the next three theorems.

-
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Theorerl I. (Assune 1, {h~) are continuous.) If x Is a local uncon-

s t r a i n e d  n i n i m L~er f or (5) , It is a local minimizer for (1).

P r o o f :  F i r s t  i t  will be shown that If d (x)  ~ 0 , for every 0 < r. < I

E(x) . (7)

Obviousl y d(x) ~~ 0 =~~ d [x—cd (x fl # 0 , since otherwise x — cd (x) would be

;i closer feasible point to x than x — d(x) . Also note that

¶x—cd (x) ) — (l—c)d(x) c ~

and thus by definition

Hd x—cd(x) fll (l—c)Hd (x)lI . (8)

Also by definition ,

I d ( x ) j — {[x—cd(x)1—d [x—cd (x)]}l I
(9)

cIId (x) !I + IId [x—cd (x)]H (using the triangular
inequality)

(assuming d(x) is not proportional to d [x—cd(x)] ) . Together (8) and (9)

imply tha t (l—u )d(x) is the single element in D (x—cd(x)] . Because of (6),

f[x-rd(x)-d[x--rd (x)]) + qHd [x-cd(x)]~~
2 f[x-d(x)] +

< f[x—d(x)J + q~~d(x)~~i
2 (because d(x) ~ 0 assumed).

This comp letes the procf of (7).

Because x is r local unconstrained minimizer it follows f r om (7)

tha t d(x) = 0 and hence that f(~ ) = E(x) . Furthermore , there is a neigh-

borhood N (x ,6) such that E(x) > E ( x )  fo r a l l  x N ( x , S’~ . Let

x C R()N(x ,i~)

I

— 7 —
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p
1’ hen

f ( x )  E(x)  (d (x )  — 0 for x £ R)

> E(x )  (since x £ N( x ,6)

f ( x )

T h i s  comple tes  the  proof of the theorem .

Theorem 1 is im ’ortant in that it states tha t use of the idealized

exac t  p e n a l t y  f u n c t ion does not introduce spurious minimizers. In the next

theorem the converse I:; proved .

rheor~~ 2 . Suppose f , {h~} are continuous functions. If x is a local

m i n i m i ze r  fo r  ( I ) , then it is an unconstrained local minimizer for (5) .

Pr oo f :  If the theorem is not true , there Is an inf in i te  sequence of points
(x
k} where X

k 
- - -b x such that

f [x~ —d (xk)

< f E x ~ — d ( x~ ) l  + qd(x ~ ) Td(x~ ) E( x~ )

< E( x ) f ( x )

fo r a l l  k , w i t h  
~k~~

(
~

c k ) c R . Since Xk 
— x —

~~ 0 , d(x k
) —‘- 0 , and

— t h e r e f o r e  X
k 

— d ( x k ) _
~~ x . This contradicts  the assumption tha t x is a

min imize r  for  x c R

Theo rem 3. Suppose I , {h ~ } are continuous func t ions .  If x is a global

unconstrained minimizer for (5), it is a global minimizer for (1). If x *
is a globa l min imizer for (1), it is a global unconstrained minimizer for (5).

P r o o f :  The proof is obvious and will not be given .

It Is useful to examine the idealized exact penalty function in terms

of Its derivative and i ts  Hessian mat r ix . These results  h i l l  be useful  in

develop ing a computable exact penalty function in the next section .

- 8 -
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The orem 4 . Stip; o~ e f , (h~
} c C3 . Suppose x is a point v.here f’(x)

has l u l l  row r ank ond suppose further that d(x) is unique and continuousl y

-~ i t t ~~ r t n t i . i h I e  in a neighborhood about x .  If x is an isolated unconstrained

In~~I t u i z e r  fur the ideal ized pena l ty  function (5) , i.e., if E ’(x)  0 and

E ” ( x )  is • i  pos i t i ve  d~ f i n i te  mat r ix , then x sa tisf ies the second order

s u f t  i c i e n c y  c o n d i t i o n s  for  an isolated local minimizer for  ( 1).

l’ r o o i :  Assume fo r  the mome nt tha t  at a point x , d ’( x) and d ”(x)  are

dc ined . Using the chain rule of differentiation ,

E’(x) = f’[x-d(x)] (I-d(x)l + 2q d(x)
Td ’(x) , ( 10)

and

E ’(x) {f’[x—d (xfl ~ I )  {—d”(x)) + [I — d ’( x f l  f ” [x — d ( x f l  [ I— d ’( x ) J

(11)
+ 2q dt (x)Td?(x) + 2q [d(x ) ® l ] d”(x)

Con sider any po in t x near x . Let z*(x) solve the problem

mininize ~z—x j 2 subject to h(z) 0

Note tha t d(x) = :— z*(x) . For x close enough to x , clearly z*(x) is

close to x and the m e t r i x  f ’ [ z *(x) ] has rank p . Therefore, the first

order necessary conditions apply and

[z*(x)_x l 2 + h ’[z*(xY
T u*(x) — 0

where

u*(x) — {h ~ f z * (x ) ]h~ 1z * (x ) ] T } lh~ Ez *(x ) 1 (x_z *(x)~ 2

Another way of wri~~Ing this is

P(x)d(x) — 0 ( 12)

wher e

P ( x )  ( I 1 l ,[z~ (x))
T
~I~, [ z *(x)1h ,[z *(x)J

T_ l
h~ Ez*(x 1I

I
— —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~ - --  ~~~

- 
—~~~ ~~ -~~~~~~~-
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A l s o ,

h[x—d(x)J — h[z*(x)J 0 . (13)

Dii te. rent Liting (13) yields

h ’ [x—d(x)] [l—d ’(x)l 0 . (14)

l ) i f f e r e r i t i a t i ng  ( 12) y ield s

P ( x ) d ’ ( x )  + EI~~~ 
d(x)~ ]i ‘(x) 0 . (15)

When d ( x )  = 0 , (14) implies that

h ’(x) h ?(x)dt (x)

and using this in (15) y ields

h I(x){ht (x)h~ (x) T}hI(x)T . (16)

Differentiation of (14) directly yields

c~ 
} {—d”(x)} + {I_d ’(x)}h~ [z *(x)]{I_d’(x)} — 0 . (17)

From Theorem 2 it is known that d(x) — 0 (and therefore that h(x) 0 )
Thu s, formula (16) can be used .

Then E ’(x )  = 0 , Implies , using (10) and (16), that the first order

necessary conditions ar-~ satisfied at x for a constrained minimizer . The

appropriate Lagrange multi pliers are given by the formula

j u(x)T = f~ (x) h~(x)
T{h? (x)h~ (x)T} l

Thus ,

f’(x) u(x)h’6~) . (18)

The first term in (11) can be replaced using (17) and (18) and summing

appr opr ia tel y with

— [I—d ’(x)J [{u(x)
T 
~~ I ) h ”(~ )] [I—d’(x)]

- 10 —
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U s i n ~ this , thea ,

E”(x) = I’(x) I f t (x)_ {u (x)
T 

® I } h ”(x)] P(x) + 2qh ’ (x)T[h’(~ )h’(x)
T
] 

1h ’ (x )  . (19)

Because E”(x) was assumed posit ive d e f i n i te , it fo~.1ows that

z
TP(~ )[f~I(~)_{u~~ )

T
® I }h”(x)lP(x)z = ZTEf,1 ; _ (u (x)T ® I }h”(~ )~~z > 0

for all z where h’(x)z = 0 . Thus the second order sufficiency conditions

are satisfied at x

3. Fletcher ’s Exact Penalty Func tion (E~ualiti Case)

In  [1) , Fle tcher propo sed an exac t penal ty func tion (with variations)

for the equality constrained optimization problem (1). The variation closest

to the natural [dcalized func tion developed in (5) is

F(x)  = f ( x )  — f ’ ( ) h ’ (x)  h ( x )  + qh(x)T h ’(x )  -T 
h~ (x) r h(x )  (20)

wher e h ’(x) is the Penrose—Moore generalized inverse ot h ’(x )  , the p by

n derivative matrix of h(x) . In general , for a matrix A , A
t 

is the

unique matrix satisfying

AA A = A
-~- 4. 4-

A A A  = A

(AA ) = A A

(A
1A)T = A A

Let z*(x) denote a solution of the  minimum distance problem :

minimize x—z 
2

subject to i~ ( z )  0

- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~ 

i
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A firs t order Thylor ’s series approximation yields

0 = h[z*( xf l  = h(x) + h’(x)Ez*(x)_x j

The solution to ilm i s  approximation with miniumum norm is

— d(x) = z*(x)_x — h’(xY h ( x )

Substituting tl’is in the idealized exac t penalty function (5) using the

approximation f [x—d (,m)I f(x) — f’(x)d(x) yields (20) above directl y.

V iewed from this point of view , Fletcher ’s exact penalty function

for equality constraints is a first—order approxima t ion to the idealized

penalty function (5) .

Flet cher was able to show tha t if a point x~ satisfied the

second order sufficiency conditions associated with (1), it was an isolated

local unconstrained minimizer of the penalty func tion (10) for a large enough

val ue of q . This is a weaker theorem than Theorem 2 which made that state-

me nt f or any value of q . ~lore importan t, there is no corresponding theorem

for (20) analogous to Theorem 1. That is, the question of whether or not (20)

has local unconstrained minimizers which are not local minimizers for the

equality constrained problem (1) was not resolved . A partial resolution of

thi s question can be obtained by making a more precise approx imation to

z*(x)

Using a second order approximation,

• -‘. 1
- d ( x )  = z*(x) — x = — h ’(x) Ih (x) + -

~~ y(x ’.)

where y(x) is a p by 1 vector whose jth component is

y.(x) h (x ) T h ’ (x)
T 

h~ (x) h’(x) h(x)

U s i n g  the second order approxima tion

flx—d(x) I . f(x) — f’(x)d(x) + -~~ d(x) Tf”(x)d(x)

— 12 —

_______________________________ - ~~
_ -_-

~~~~~~~. ~~~~—~~~—.-•~~~
—=—

~~~~~
----— —

~~~~~ 
- -- - - - -- — - - - -. :_ - -

~J 
- — -
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and substituting the d(x) above in (5) yields (throwing away terms beyond

quadrati c in h ( x ) )

M(x) f(x) - f ’ (x )  h’(x ) h (x) - f ’ ( x)h’( x) y (x)

+ -~ h ( x ) T h ’( x) -T 
f”(x) h’(x) h(x) (21)

-~
+ h ( x ) h ’  (x)  Ii ’ (x) h’  (x)

When at x the derivatives {h~ (x) T} , j  l ,...,p are linearly

independent , then

b ’ ( x)  = h~(x)
T {h’(x)h ’(x) Tr’

The quantity

u(x) = h e (x) T f~ (x)
T

is an estimate of the Lagrange multipliers usually associated with a local

minimizer of (1). In order to differentiate M(x) is it necessary to obtain

u ’ (x)  . When h ’(x) has full row rank, it can be shown tha~

u ’(x) = [h,(x)ht (x)T}
_l [(I ® [fI(x)_u(x)

T
h~ (x ) ] )  h”(x)]

(22 )

+ h’ (x)  T(ff~(x) (u ( x ) T 
~~ 

I )  h”(x)]

Assume that at a point x , h’(x) has full row rank and that h(x) 0

Usin g ( 2 2 ) , then M ’(x) and M”(x) are

M ’ (x)  = f ’ (x )  — u (x) Th~ (x) , (23)

and

M ’ (x)  — j ’~ (x)
T(~I ® [f  ‘ (x)_.u(x)Th I (x) I) h”(x)]

T 
T

— (f’(x)—u(x) h ’(x))h”(x)] h”(x)

—1 (24)
+ h~ (x)T[h~(x) h?(x)T] h’(x)2q

+ P(x)[fhl (x)_{u(x)T ® I  ) h”(x)] P(x)

- - ~~~~~~~ 

n 
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w mc ri

= [l_h ’ (x ) i~~(x)] Er_h~(x)
T{h~

(x)ht(x)Tr
1 h’(x )~

til eorom ). Suppose f , {h ~~l c C
2 

. Let x be an unconstrained local

minimi ze r for tim e exact penalty func tion M(x) given by (21). If h(x) = 0

then x is a constr~’ined minimizer for problem (1).

Pr~~~t : Let x •. R Fe any point “cl ose to” x

Then

f ( x )  = M(x) (x c R and therefore h(x) 0)

> M ( x )  (x is a local unconstrained minimizer)

f(x) (x r R and therefore h(x) 0)

The same theorem under the sane assumptions can be proved for Fletcher ’s

p e n a l ty  f u n c t ion (20) .

Theorem 6. Suppose f , {h ~~} c C
2 

. Let x be an unconstrained local

min imize r  fo r  the exact penalty function F(x) given by (20). If h(x) 0

then  x is a local minimizer for the constrained problem (1).

Proof: The proof is identical to that of Theorem 5.

The difference tetween these approximations and the idealized exact

penalty function is that they do not guarantee, except in special cases, that

the penalty func tion is the value of the objective functiom at the closest

feasible point , plus some weight of the squared distance to that point . When

the constraints are linear and the objective function quadratic , M(x) does

hav e t h i s  p roper ty  and , t he re fo re , one can show that unconstrained local mini-

mizers in this instance are constrained local minimizers (actually global

min imizers) . Since F(x) is a first—order approximation to (5) and M(x)

is a second—order appro~-dmation , one would expect that examples where spurious

local unconstra ined minimizers exist to the former which do not correspond

to constrained minimizers of (1) would be more unlikely to occur for M(x)

At present there are no examples of this.

— 14 —
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From an a1~~or itImmi c point of view, if in attempting to minimize

either F(x) or M(x) , the sequence of points generated is not tending

toward feasiblity. it would be no great trick to modify the algorithm to

o b t a i n  points -~~oce r to feasibility and then retry to minimize the exact

penal ty functions later .

The nex t  theorem shows another  sense in which M ( x )  is closer to the

Idea l i zed  exact  p en a l ty  f u n c t i o n . The Hessian matrix of M (x) at uncon-

s t r a i n e d  local m i n i m i z e r s  f o r  (1) agrees with that of E(x) . This is not

th e case for F(x) which is why the  value of q is impot tant for showing

t h a t  strict local m i n i m i z e r s  of (1) are isolated unconstrained minimizers

for F(x )

Theorem 7. Suppose f , {h ~~} c C 3 
. Suppose x is a point where f’(x)

has f ull row rank , and suppose further that x satisfies the second—order

sufficiency conditions for a strict isolated local minim b.er. Then x

is an isola ted unconstrained local unconstrained minimizer for M(x) as

g iven by (21) f or ~~~ val ue o f q > 0

Proof: Because x is feasible, h (x )  — 0 , and (23) and (24) are applicable.

From the first—order optimality conditions for a constrained minimizer , it

is known that

— f ’ ( x )  — u(x ) Th~~(x) — 0 , (25)

t h e r e f o r e , M ’ ( x )  = 0

Because of (25), E”(x) takes the form

P(x)[f”(x) - {u(x)T ® i~~1”(i)]P(~) ~ 2qh~ (x) T(hI(x)h1(X)T} h ’(x)

The su rund  order  s u f f i c i e n c y  condi t ions  imply tha t this is positive definite

f o r  every  q > f )  and t h e r e f o r e  t h a t  x is an Isolated unconstrained local

m i n i m i z e r  f o r  (~~1 ) .

— i s —
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- The I n e q u a l i t y  Cons t ra ined  Problem

The in e q u a l i t y  -onstrained problem can be written :

nin im m ze f(x)
x (26)

sub ject to c.(x) > 0 , f or I t , . . .

:~~~t in~- t: = {x~g1
(x) > 0 i — l,...,m }

An example 01 t~ils problem is a modificatio n of Problem (2):

m in imize  — x + y
(x,y) (27)

2 2
subject to — x — y + 1 > 0

Lines of flow associated with this problem can take forms similar to

the equality constrained Problem (2) with the major exception that the interior

oi the circle is 1154 ) now feasible. This means (see Figure 1) the flow l ines

in the circle which are above the line — x + y 0 are no longer valid . They

wcu~ d be rep laced  by l t m nes parallel to the negative gradient vector (1 ,_1)
T

In Figure two , the modified lines of flow would probably l ook like those given

in l igure 4. Here the lines would follow the negative gradient path (in the

interior of the circle) until the boundary is “sensed” and then would curve as

a combination of the projected gradient at the boundary and the negative gra-

dient vector.

A nseful way to view this modification is to decompose the negative

gradient of f into tvo parts. One is the projection of the negative gradient

on the direc t ion which tends to the closest boundary point , and the other

tha t which Is the difference of the negative gradient and the projected negative

g r a d i e n t .  This decomposition is shown in Figure 5. A nata~ a1 mod ification of

the  l ines  of f l o w  is then to truncate the projected negative gradient vector

I f  It extend s beyond the feasible region.

Th i s analysts of the lines of force makes clear the exact penalty func—

t i o n  to  be used In circumstances near constraint boundaries where the objective

function has a lesser value at the closest point. The analysis is dependent upon

— 16 — 

-,—-.. -. -“
~~~~~

. 

~TT ~~~~~~~j ” ~ .~~~~



FIGURE 4 FLOW LINES FOR INEQUALITY
CONSTRAINED PROBLEM

d

— 17—

______________ 
-a

_ _ _ _  - —-., —-.-
-~~~~~ --



I

t-) PRCJECTED
GR A DIENT J I

(
-z

FIGURE 5 FORCE RESULTING FROM
BOUNDARY REPULSION

-18-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~

— - —  - — —  _ _ _ _ _ _ _ _ _ _ _ _ _ _



(- x s y  IF

E(~ ,y): 2 2 5— x / ( z  +y ) + y/ (z2+72) 5

( , . C(x 2+y 2)~
5....s32 OTHERWISE

‘ 3

- — — — .~ .~

,
/ ~~

. — 5%
‘S

/ 5%.
/ 5% 

5%

/ 5%

/
/ 7 ,

/
/
I

/ ,~-~-7 

)o 

\~ \

-. — .~, 2 , 3 4-3 I /
/

/ I ,) 
/ /% I /

‘ I
‘I ~ ,‘E a — I  / /
‘ ‘ / /
II I,

5% E•I, /
‘4 ‘S. /  /s —2 ..- ,

~~ 
—

5%. 
—

~ 3

FIGURE 6 ISOVALUE CONTOURS FOR
INEQUALITY PROBLEM

— I ——~~~~~~~~ -- -~~- - - -

~~~

- 

-1 9—

— - -  
_

~~~~~
-

~~~~~~~~~~~~~~~
-._ 

- - 
- ---:------ ---- —

~
---— -—- .------ -

- ~-, .-, -~ 4



T—359

scaling of the ob~ ect ive function and modifications must be made for the

c i r 4  u n s ta nce s  which cun occur here but not in the equality case. There

is also -~ serious combinatorial difficulty which arises. Which of the many

suhspaces defines the ~‘xact penalty func tion? In short , the inequality con-

strained problem poses many note difficulties than the equality constrained

one.

Let M = {l , . . ., m } . There are 2
m 

subsets of M . Denote the

r h  subse t  by I , . By convent ion , le t  1
~ 

= {
~

} . Let T 0 be a p re—

a s s i 4 ~n~-d number  w h i c h  d e f i n e s  the  “close” boundary p o i n t s .

A lso , d e f i n e  3 = { yj g
1

(y)  = 0 , i c I , y e R } . (28)

T~’~ - min imum va lue  associated w i t h  S
~ 

is E~~(x) — + ~ if g1(x) > t

f o r  some I c l~ , or if S~ is empty .  Otherwise let

~~ (x) = mm x — y J . (29)
V~ SQ

For any p o i n t  x de f in e D
~~

( x )  = (dlx—d solves (29) above) . Usually

t here is o n l y  one vect’:r in ~~~(x) . Let d
~~

(x)  be any vector f rom

S U C h  t hi t

f [x—d (x)) infd D ~~~~
f [x d]  (30)

Define E~ (x)  = f [x_d~ (x)] + q4(x) d~ (x )

The exact pe ialty funct ion associated with Problem (26) is

L(x) miri ~E~ (x ) }  . (31)

This exact penalty func tion agrees with (5) when there are n~ inequality

(0 1 S t  r a m t  ~
Some IsoIvalue contours associated with Problem (27) are plotted in

Figure 6. Here i .9

— — 
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T h e o r e m s f o l l o w  which r e l a t e  the  local minimizers of the exact penalty

function t o  t h os e  of Problei~i (26).

F c ~~r c i  ~~. Su~~>ose t . {g . } are c o n t i n u o u s .  If x is a local unconstrained

~i ini ~~i,er to r t h e  i x d c r :  p e n a l t y  f u n c t i o n  (31) ,  then i t  is a local m i n i m i z e r

~or r o b l e m  (2h

P r o o t  S uF p o S t -  x is a loca l  m i n i m i z e r  f o r  (31) . Let 2. be any index de—

t i f l 1 I 1 c ’~ E(x) (usolIl v t he re  is o n l y  one such index). Let d 9 (x) be some

v i c t o r  t ro:u D (x)  fo~ which E
~~

(x) is de f ined  in (30) .

L i t  c be such that 0 < < 1 . Since x — cd
2.

(x ) — ( l — c ) d 2 (x)  c R

i t  t o l i o w s  f r o m  the de f inition of d 9
[x_cd

~~
( x ) ]  tha t

d
~~
[x_ cd

~~
(x)1 I (1-c) d

2.
(x) . (32)

Also hv d e f i n i t i o n

- 
d ç (X) H < x - 

{~~
_cd

~~x)1 
- d 2. 1x-~ d 2. (x ) J ~ H

(33)

c d~~(x)  + d~~ x—cd 2.
(x)I . (from the triangular

inequality)

The last inequality is strict unless d2.
(x) is propor tioi.al to

d ,[x.-zd 2.(x)] . Together (32) and (33) imply tha t

d (x_ cd
~~
(x)1 H (1—c) I I d 2. (x )  H

Thus , ( 1— c ) d ~~(x r D 9 [x— c d 2. ( x ) I  . (34)

1~,ec ( l 15 t P t  ( 11)) .

I fx—u d~~(x)--d {x —P d Q (X)}j f l x — c d 9 ( x ) — ( l— i ) d 9 ( x ) J  — f [x—d
2.

(x ) ]  . (35)

— 21 —
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E~ x- d (x)1 i-;~ 1x-cd~~(x)J ((31))

< f l x — d 2 ( x ) 1  + ( l _ c ) 2d 2.
T (x)d 2. (x)q  ( ( 3 4 )  & ( 3 5 ) )

f~~x—d (~~)j + d~
’(x )d 2.(x )q  (36)

= E(x)

It d~~(x) ~ 0, strict ~nequa1ity holds in (36). Since x is an assumed

l c ~ i~ uaconst rained minimizer for E , it follows that EIx—cd
2.
(x)J > E(x)

l o r  ~. l c ;lr  Ofl ( and t h e r e f o r e  t ha t  d 2. (x)  = 0 . Thus , x c R , and also ,

E ( x )  = E~j x)  f ( x )  . (37)

• Now , tor any x i R , E1
(x)  ~(x) . Because x is an unconstrained

local m ini~ni zer for E , there is a neighborhood N(x ,~~) such tha t

IT (x )  > E ( x )  f or x c ~!(x,6) . Let x c N(x ,6) (~ R . Hence ,

f ( x )  = E
1

(x)  (x R)

E(x) ((31))

— (x c N ( x ,6) )

= f(x) . ((37)) . Q.E.!).

l i e  importanc e of this the ore ni  is that use of the exact penalty func t ion

does no t  introduce spurious cand idates for local minimizers of the inequality

constrained problem . The converse ( 1  t h i s  theorem is not true without modifi—

i t i o n ;  b i t  this i s  not a s (rious computational problem . There are two partial

( - n v r s i -  theorems.

-l lice  r e ,  9. Suppose I , 1g 1 
} ire cent inuous functions. Suppose x is some

b c  ii milii rn I~~(r f r  Prc~h 1em (~~6). Then there exists a value q > 0 such

h i t  r q — q , x Is a lw - u I unconstrained minimizer for (31)

I 
- -- - - -:--
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t’ r o o f  : Assume t h e con~~r . u r v , that t l i * ’e  i s  a sequence {x
k

} where X
k 

X

s i n -h  t h i t

l- :(x k
) -- ! - f ~~) 4 (x)

or a l l k . L t  (k) be ;u i ndex  del i n in g  F ( x k
)

(~ ls t ( i ) .  Without l e ss  of g e n e r a li t y  assume tha t  x c St (k )  for

all k . It is clear that for any value of q > 0

the proof of Theorem 2 applies and a contradiction

resu .jts.

( isc (ii ). Assume without loss of generality that x 
~ 
S
~ (k)

F r  all k . This means that there is an index I

such that ~ .[x~
_d

.(~ )
(x~ ) J  = 0 and g.(x) > 0

Thus ,

l i n i uf  H dj ,k\ (
~
. 

~ 

2 
= 

— 

0
K 2

Let = llminf f[x
k
_d
2.(k)

(x
k
))

k—>~
Th en , take q to be any value such tha t

q [f(x)— v
11/v 2

It then follows directly that for k large

E(x
k
)

a c o n t r a d i c t i o n . Q . E . D .

Theorem 10. Suppose I , 

~~~~~~ 
, (h . }  are cont inuous  f u n c t i o n s .  Suppose

is some l o r i l  m i n i n i z e r  f o r  Problem (26) . Then there  exis ts  a va lue  i 0

such that for ,-i ll 0 < T , used in (28) x is a local uncons tra ined

m i n i m i z e r  f r  ( 1)  for - .ve~y  q - , 0

I used i n  tel in I ng is sm;t l I enough , then there Is a neighborhood

about x - inch  t h a t for every x that neighborhood , x S
2.() 

where 1(x)

is  an i n t h K di~I~ ning E ( x )  . Thus , the  Case (1) proof of Theorem 9 appl ies.

4 
n.~~.fl .

5 — 2 3 —
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~~~ F h i - t her ’ s~~~x i c t i’ en a l t v F u n c t i o n (1n~~~~ j j~y_Case)

Iu ~J ]  F L t c l n r extended his penalty func t ion to the case when the

pr  1 ’ is w ritten with inequ ality constraints (26). As indicated in the

L~( v ( - l ( ~; 1(-) t of the ideilizeci exact penalty function in Section 4, there is

.i h isic comhinai orial problem that is not associated with the equality con—

stra i~nd problem . The problem is to determine , at any poin t  x fo r  wh ich

t h 0  p e i i l t v  t unct ion is to be defined , which of the  many constraints define

the t - X d C t  penalty unction. The me t hod given in Section 4 is theoretically

- - i  id , L i i  p055 i 1  y c om p u t a t  i on a l ly  p r o h i b i t i v e . ~ letcher resolvei-i t h I s

~r . b l e m  in the  following way.

L o n s i d o r  t h e  quadr-i t Ic opt imizit ion problem :

f o r- m v  p o i n t  x

I .T
m i n i m i z e  -

~~ q -
~ 15 + f (x)~

(38)

s u b j e c t  to  g ( x )  + g ’ ( x ) i S  > 0

Let u ( x .q )  he a set of Kuh n — Tucke r—Karu sh  mul t ip liers assoc iated

w i t h  t h e  s o l u t i o n  of t h e  p rob l em and Let  6(x ,q)  deno te  the solution point.

S i n c e  t h e  objective function is s t r i c t l y  convex , the solution point (If one

exists ) i unique a l t h o u g h , in genera l , the  m u l t i p l iers  a r e  n o t .  The exact

enal  t v  f u n c t i on  at x is , then ,

R(x) f ( x )  - u ( x , q ) Tg ( x )  . (39)

When the rnu l ti p l i c r  vec to r  u ( x ,q)  is not un ique , the definition is ambiguous.

F u r t l i i r m o r p  the rm i r e  (j i lest loI s of t h e  c o n t i n u i t y  of (39)  and i t s  l eve l s  of

d i t  f e r e n t  i , m h i  l i t  v. Ihm e si are taken up by F l e t c h e r  and tinder c e r t a i n  r e g u l a r i t y

a s s i i m p t  io ns l i e  r v m s  t hico r c m i  e t I -e rt l  I rig these m a t t e r s .

TI) show t h a t  ( 3 9 )  is an approx  imat ion to ( 3 1) ,  cons t d er  t h e  f o b  low i ng .

l ) e f i o c  I ( x )  to be the  set ( f  i n d ice s  such t h a t  g 1
(x)  + gj(x) 6(x ,q) = 0

—2 4 —
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I .  - . t h e  c on s t  r~m h i t s - m t  ive or  bind i ng at  the solution of (38) . Then the

re~’ r i J m r j t  V a s s r m m r t iOn is that the vectors

f o r  I

i re 1 i n - m r  I h i- i t - en d c n t

~P t - r t h i ~ r t ~~u l m r i t v  assumpt ion is satisfied , the  multi plier vector

u ( x ,q) is uni ;-n . The components associated with the constraints whose

i n d i c e s  a m p -  not  i n  L’x) ire equal ii zero. Let ~ (x) denote the vector

O~ cI l I s t  r i  m i s  With I n ines in L(x) . The mul t i p i lera f o r  these - - i n s t raints

- r e  i~ iven by t b -  f e r m i u m ( 4 1 )  b e l o w .  Then the exac t pena l t y tune t Ion t i ~ ts

ri- i
I T ~-

t( x) - F ’(x )~~’(x )  ~ (x)  + -
~~ q ~(x) ~‘(x) j’( x )  ~(x) (40)

u(x ,q) = -- ~~~~~~~~~~~~~~~~~~~~ + g~ (x) tT
f~~(x) T (4 1)

a rid

= [l_ ~~i(x) 
T~~I(x)]fu (x)

T
/q - ~~~(x) T

~~ x)

The obvious connection between this one and his equality exact penalty

function can be made. Th is derivation is different from the way in which (20)

was constructed . The d i f f e r e n c e  between th i s  one and the idealized exact  p e n a l ty

f u n c t i o n  (31)  can he a r~alyzed in the same way that the equality penalty func—

t Io ns w er e

I t  is i n te r e st in g  to show how F le tcher  could have obta ined a s i m i l a r

ne n al tv f u n c t i e i i  which is closer h u t  still essentiall y d i f f ~ r ent from the

mir imu rn d istani - point of view.

C o n s i d e r  the pr oblem

mi nim j:~e f(x—6 ) + ~~
T~q

(42 )
subject to g (x—~S) > 0

— —  —- ~~~~~~~~~~~~~~~~~~~~~~~ -
- 
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L u  .i nv  x , l ( -  - - S( x , q )  denote -u s o l u t i o n  p o i n t  ( l o c a l ) ,  and

ti (x .q ) ~m se t  o l  m~~ - - c hated r~r I l t i p l hers.

Ih e r l x i  t peula it v feinc t Ion Is deli ned a t  x by

( (x) = f N- - (x ,q)J + ~ 6(x ,q ) T6(x ,q )q  . (43)

l i r e  q u e s t i o n s  o1~ whether or not this has spurious local minimizers and

w h e t h e r  i h o t  r i n  in  i - , - r  of  t h e  orU’, i n a l  problem are m i n i m i z e r s  of t h i s  one

ar t i l t - I l  up  n e x t .

i h u r~ - i i .  I f  t , (
~~. }  ar e  co n t in u o u s , and if x is local min imizer  f or

( h i , t h t t m  X is .m l e a l  unconstrained minimizer for the exact penalty func t ion
( ‘ ,  I )  ~m ) , v~- for m c ’ - q 1)

I r o t  : P i c k  sma l I 0-n Ilu ’ so that x is a global  min imize r  f o r

x x — 2/ 2 jq } P R . Let ~ N
1 

= x — <

Con s i d e r  thie nei~’,h rIs rhood about 0 such tha t D = 6 ( 6 <

ILerl t i c  
B 

T h ’) ( I ) ) H H q = -
~~ 

• — q = c . Fur thermor e, Lor

- l  x — ~~~— •~ II x — x L  + H H ~ 2 /c7~ . Trvts

F Ix_
~
6
B l f(x)

— Together , t h e i i ,

° t x - ~~ 1 + 
~~ 

2
q 1(x) +

B u t  for ~ = ( x — x )

f[x-(x-x)] + -

~~ H I :  + H ~ H
2 

q

< f ( x ) +

T he rm-I ri- t h e  u - mi Imun is taken on at an interior point.

— Pf —
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The converse t hu- ~orem w i l l  now be proved .

l i r t o r e m  I .  I f  I , {g.} are continuous func t ions , then any  local un c o n s t r a i n e d

min i rn i~’~ r for tLe exact penalty function (43) for any value of q is a local

r u i n  in i z i r  f i r  the constrained Problem (26)

P r o o f : Let  x be local unconstrained minimizer for (43). We first show

that

6 (x ,q) (1 . (44)

Assume tha t 6(:<,q) ~ 0 . Consider points along the ray connecting

x t o  x — 6 ( x ,q) . The minimum value of (42) is clearl y less than

[ x — -~ (x , q ) j  + ~-q (l-c)
2 

I 6(x,q) 
2 

< f(x-6(x ,q)1 + ~~ I 6(x ,q )  2

f o r  o s m a l l .  Th is c o n t r a d i c t s  the  assumpt ion . Thus (44) must hold .

Let x be any o m t  feasible to (26), and “cl ose to” x . Then

f(x) . c;(x) (since o is feasible to (42) whey x R)

‘ ;(x )  ( m s s r i r p t i o n  t h at  x was a loca l  uncons t r a ined

m iii f:-~ zer)

= f(x) (‘i(x ,q) 0) . Q . E . D .

L. - •
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